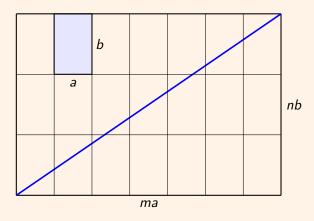
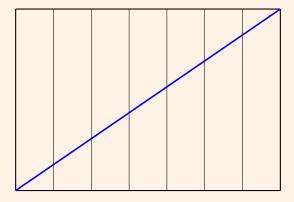
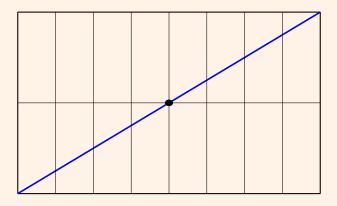

UN PASEO POR LA DIAGONAL


Antonio Martinón Universidad de La Laguna

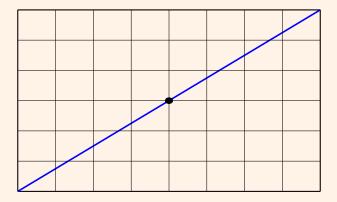
Un fisquito de Matemáticas

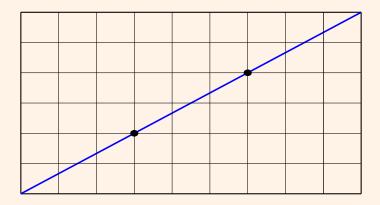
7 Noviembre 2019



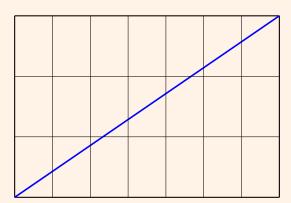


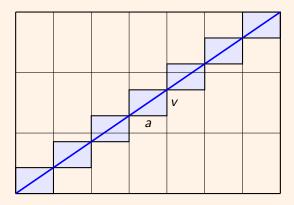
¿Cuántas baldosas atraviesa la diagonal?: δ

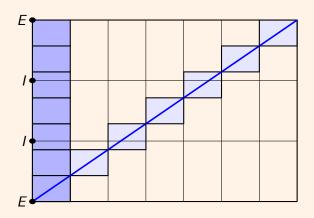

Ejemplo: m = 7 y n = 1. Es $\delta = 7$


Ejemplo: m = 8 y n = 2. Es $\delta = 8$

Ejemplo: m=8 y n=6. Es $\delta=12$


Ejemplo: m = 9 y n = 6. Es $\delta = 12$


Primero	suponemos	que	la	${\sf diagonal}$	no	pasa	por	ningún	node

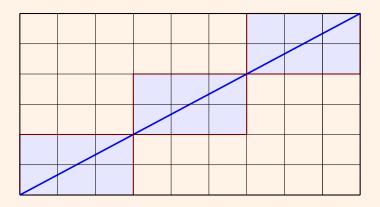

Eso significa que m y n son primos entre sí.

interior.

Formamos los *m* rectángulos diagonales:

 $\delta = 9$

Cada rectángulo diagonal está incluído en una baldosa, salvo los n-1 que tienen un nodo intermedio y que se solapan con dos. Luego


$$\delta = m + n - 1.$$

El resultado no depende

- ightharpoonup del tamaño $a \times b$ de las baldosas
- del tamaño del rectángulo

Sólo de *m* y *n*.

CASO GENERAL. Ejemplo: m=9 y n=6. Es $\delta=12$

Se forman d = mcd(m, n) "pequeñas mallas" (= la diagonal no pasa por nodos interiores) de tamaño

$$\frac{m}{d} \times \frac{n}{d}$$
.

En cada "pequeña malla" el número de baldosas que atraviesa la diagonal es

$$\frac{m}{d} + \frac{n}{d} - 1$$
.

Luego el número de baldosas que atraviesa la diagonal es

$$\delta = d\left(\frac{m}{d} + \frac{n}{d} - 1\right) = m + n - d$$
.

